Endurance training

Endurance training is the act of exercising to increase endurance. The term endurance training generally refers to training the aerobic system as opposed to the anaerobic system. The need for endurance in sports is often predicated as the need of cardiovascular and simple muscular endurance, but the issue of endurance is far more complex. Endurance can be divided into two categories including: general endurance and specific endurance. It can be shown that endurance in sport is closely tied to the execution of skill and technique. A well conditioned athlete can be defined as, the athlete who executes his or her technique consistently and effectively with the least effort.

Endurance training is essential for a variety of endurance sports. A notable example is distance running events (800 meters upwards to marathon and ultra-marathon) with the required degree of endurance training increasing with race distance. Two other popular examples are cycling (particularly road cycling) and competitive swimming. These three endurance sports are combined in triathlon. Other sports for which extensive amounts of endurance training are required include rowing and cross country skiing. Athletes can also undergo endurance training when their sport may not necessarily be an endurance sport in the whole sense but may still demand some endurance. For instance aerobic endurance is necessary (to varying extents) in racket sports, football, rugby, martial arts, basketball and cricket. Endurance exercise tends to be popular with non-athletes for the purpose of increasing general fitness or burning more calories to increase weight loss potential.

Long-term endurance training induces many physiological adaptations both centrally and peripherally mediated. Central cardiovascular adaptations include decreased heart rate, increased stroke volume of the heart, increased blood plasma, without any major changes in red blood cell count, which reduces blood viscosity and increased cardiac output as well as total mitochondrial volume in the muscle fibers used in the training (i.e. the thigh muscles in runners will have more mitochondria than the thigh muscles of swimmers). Mitochondria increase in both number and size and there are similar increases in myoglobin and oxidative enzymes. Adaptations of the peripheral include capillarization, that is an increase in the surface area that both the venous and arterial capillaries supply. This also allows for increased heat dissipation during strenuous exercise. The muscles heighten their glycogen and fat storing capabilities in endurance athletes in order to increase the length in time in which they can perform work. Endurance training primarily work the slow twitch (type 1) fibers and develop such fibers in their efficiency and resistance to fatigue. Catabolism also improves increasing the athletes capacity to use fat and glycogen stores as an energy source. These metabolic processes are known as glycogenolysis, glycolysis and lipolysis. There is higher efficiency in oxygen transport and distribution. In recent years it has been recognized that oxidative enzymes such as succinate dehydrogenase (SDH) that enable mitochondria to break down nutrients to form ATP increase by 2.5 times in well trained endurance athletes In addition to SDH, myoglobin increases by 75-80% in well trained endurance athletes.

The potential for negative health effects from long-term, high-volume endurance training have begun to emerge in the scientific literature in recent years. The known risks are primarily associated with training for and participation in extreme endurance events, and affect the cardiovascular system through adverse structural remodeling of the heart and the associated arteries, with heart-rhythm abnormalities perhaps being the most common resulting symptom. Endurance exercise can also reduce testosterone levels.

Leave a Reply

Your email address will not be published. Required fields are marked *

Copyright foroactivo.eu 2018
Shale theme by Siteturner